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Fréedericksz transitions in smectic liquid crystals in annular
geometries

by P. J. BARRATT and B. R. DUFFY*

Department of Mathematics, University of Strathclyde, Livingstone Tower,
26 Richmond Street, Glasgow G1 1XH, UK

(Received 24 January 1997, accepted 16 May 1997)

This paper investigates the stability of simple static orientation patterns in a sample of smectic
liquid crystal confined to a cylindrical annulus, when a magnetic field is applied. Four different
arrangements are considered, covering cases where the layer normal is everywhere either
radial or axial, and the (orthogonal) magnetic field is either radial, azimuthal or axial. A
classification is given of the threshold radii for mechanical instabilities, and of the threshold
magnetic fields for Fréedericksz transitions for these cases, with strong anchoring at the

boundaries.

1. Introduction

As is well known, a Fréedericksz transition occurs in
a liquid crystal when, under an incrementally increasing
applied magnetic or electric field, a simple initial equilib-
rium orientation pattern in the material begins to change
to a more distorted pattern, at some critical value of
the applied field. Theoretical studies of Fréedericksz
transitions in nematic materials have been very successful
in providing means of verifying experimentally the con-
tinuum theory of Ericksen and Leslie [1] for these
materials, and of measuring the elastic constants that
occur in that theory. In particular there has over the
past three decades been a variety of studies concerning
orientation patterns in nematic samples confined to a
cylindrical annulus. For example, the early analyses
of Leslie [2] and Atkin and Barratt [3] concerned,
respectively, the case in which the material is initially
aligned azimuthally with the magnetic field applied in a
radial direction, and the case in which the initial align-
ment is axial and the applied magnetic field is either
radial or azimuthal. For these set-ups, on the assumption
of strong anchoring at the boundaries, critical magnetic
fields at which Fréedericksz transitions occur were
determined in terms of the elastic constants ki1, k22
and k3.

Much more recently Palffy-Muhoray et al. [4] con-
sidered the onset of purely mechanical instabilities in
nematic samples in an annulus, their analysis indicating
that, even with no applied field, an initial radial or

* Author for correspondence.

azimuthal alignment would be unstable if the outer
radius were to exceed some critical value c. In particular
they showed that, when there is weak anchoring on at
least one cylindrical boundary, 7. depends on the saddle—
splay elastic constant k24 as well as various anchoring
coefficients and other elastic constants. Barratt and
Duffy [5] extended their analysis to include the effects
of magnetic fields: they presented a catalogue of the
threshold fields H. required to induce a Fréedericksz
transition for all the six cases in which the (mutually
orthogonal) magnetic field and initial director field are
either radial, azimuthal or axial.

The success of studies of nematics in annular geo-
metries has motivated work on analogous problems for
smectic C materials. Atkin and Stewart [ 6], using the
continuum theory for smectics recently formulated by
Leslie et al. [7], considered the case in which the
smectic layers form circular cylinders concentric with the
boundaries, with the initial director orientation every-
where lying in the radial-axial plane and with the
magnetic field applied azimuthally. They presented a
non-linear study based on static theory, and showed
that a more distorted state becomes energetically more
favourable than the initial alignment when the field
exceeds a critical value Hc. The relationship between H.
and various material parameters provides a means of
estimating certain elastic constants. Here we consider
four arrangements in which the smectic layers are either
concentric cylinders or circular discs, and the applied
field is either radial, axial or azimuthal. (The number of
possible arrangements of this type is less than for
nematics due to the constraint that the angle between
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the director and the layer normal is fixed.) After outlining
in §2 the continuum theory of Leslie et al. [7], we
considerin § 3 the linear stability of the initial alignments
with respect to time-dependent perturbations in the
director and velocity fields. We catalogue both the
critical radii for mechanical instabilities and the thresh-
old magnetic fields for Fréedericksz transitions in all
four cases (and we show agreement with the threshold
field obtained by Atkin and Stewart [6] for the case
they considered).

The continuum theory of Leslie et al. [ 7] for smectics
involves nine elastic constants, and our results involve
five of these constants; thus potentially these five could
be determined by means of experimental arrangements
of the type considered herein.

2. The continuum theory

Here we briefly summarize the equations proposed by
Leslie et al. [7] to describe the isothermal behaviour
of incompressible smectic C liquid crystals. Their con-
tinuum model assumes that these materials are uniformly
layered structures with the average molecular orientation
(represented by the director M) having a uniform tilt
angle a with respect to the unit normal 2 to the layer.
Two orthonormal vectors are employed to describe this
layered structure; one is @ and the other is the unit
orthogonal projection € of the director onto the smectic
planes, so that

n=acosatcsin o, (1)
The relevant equations are then the constraints

aa=cc=1,

ac=0,
(2)
curla=0,
V v=0,
and, in Cartesian tensor notation, the balance laws
pvi= =Pt Bla,+Ejet 1y, (3)
oW oW .
-\ — —+g?+ G‘;+ gifkﬁk,/-i_ J/Cli+ KCiZO
o4ij | 0% )
(4)
and
oW oW .
—\ — — 45+ G+ ka;+ c;=0, (5)
oy |; %

=14,
i =MD+ wma,Dyaia;+ uy(Dia;+ Dia;) ]
t 3¢, Dpcici+ uy(Die;+ Diey)
+ usep Dy(aici+ ) + 2 (Aia;+ Ajay)
+ 22(Cic;+ Ciep) + 43¢, 4, (a;c;+ a;cy)
+x1(Di¢;+ Djc;+ Dia;+ Dja;)
+rala, Dy(aic;+ ajc;) + 2a, Dpaja;]
T r3[e, Dy (a;c;+ aje;) +2a, D cic; ]
+ 1 (Ci”_/+ C/”i) + Tz(AiC/‘i' Ajci)
+ 2T3cpApaiaj+ 24¢,4,¢:¢5,
7= A(Dja;— Diay) + 1, (Dje;— Di¢))
+ A3 CpDZ(”iC/— ”_/Ci) +7L4(A_/”i— Ai“_/)
+ A5(Ciei—= Cicp) + A6 ¢y Ay (aic; — a;¢)
+u(Djei— Dig)+ na(Dja;— Dia))
+ 13a,D(a;c;— a;c;) + 146, D) (a;¢;— a;cy)
+ ws(djei— i+ Ga— Cay),
gi= =20 Dit Azc,Dyc;t Aad;t Lee,d,¢;
+ 0D+ r3a,D5¢;+ wye, Dyeit 15Ch),
gi= =2 D+ AsCit+ 1 Di+ 154,)),
Di=Dya;,  Di= Dy,

2D=vytv,  Ai=a—Wya,

Ci=ci—=Wie,  2Wi=vi— ;.

(6)

Here Vv is the velocity, p is the constant density,J i 18
the alternator and a superposed dot indicates a material
time derivative. The quantities 7, 7 7, k¥ and B are
arbitrary functions of X and time ?, and are effectively
Lagrange multipliers arising from the constraints (2).
When a magnetic field H is present the generalized body
forces G“ and G take the forms

G= y,(H n)H ¢os a, G°=y,(H n)Hin o,

(7)

where Y. denotes the anisotropic part of the magnetic
susceptibility (assumed constant). Finally Hp, represents
the energy per unit volume due to the magnetic field,
and W is the bulk elastic energy per unit volume, taking
the form [7, 8]

_ 2 , 2 2 ,
2W =Kf{(a;;))"+ Ki(c;;)"+ K‘z'(ci”i}/'?/) + KLZCI;/'CI;/'
+ K5¢;;¢¢0¢ 1 2K5a;,(¢;a;,.¢)
+ 2K5¢ ¢ 0art 2K ¢ (¢iai¢) + 2K5 a; ¢

(8)



20:22 25 January 2011

Downl oaded At:

Transitions in smectics in annuli 527

The theory thus provides 16 equations (2)—(5) to
determine the sixteen variables 4;, ¢;, vi, Bi, p, v, K and .

3. Linear stability problems

Suppose a sample of smectic liquid crystal is con-
fined between two fixed coaxial circular cylinders of
radii 71 and 72 (where 2>71), so that the smectic
layers are either circular cylinders concentric with the
boundaries or are discs perpendicular to the axis of the
boundaries. (Roughly speaking, these alignments corre-
spond, respectively, to the so-called homogeneous align-
ment and bookshelf alignment occurring in a ‘planar’
cell.) We consider the effect of applying a magnetic field
H to such an arrangement, the applied field being radial,
azimuthal or axial, and also everywhere perpendicular
to the initial alignments of @ and €. Specifically, referred
to a polar coordinate system %, @, z, with associated
orthonormal basis €,, €,, €., we shall be concerned with
the following initial static states and associated applied
magnetic fields:

L A)=2¢€,, Cp=¢, H:He:’

II. apy=e,, co=e, H=H(r/r)e,,
III a0:e:’ c0:er’H:H(rl/r)e¢’
IV. a():e:’ cozedl’ H:H(rl/r)er’

H being a constant in each case (with the physical
dimensions of a magnetic field). Each of these states is
an equilibrium solution of the equations given above.
[Of course, it may be easier experimentally to establish,
for example, a radial electric field, rather than a radial
magnetic field; however, since a linear stability analysis
for these two arrangements results in the same math-
ematical problem, we refer only to the case of a
magnetic field.]

We wish to determine the stability of these states to
small-amplitude perturbations € and ¥V to ¢ and V, it
being assumed that the positions of the smectic layers
are unaffected (so that a is unchanged). We thus have

a=a,, c=c¢)+¢ v=¥, 9)

with € and V small in magnitude. If strong anchoring

and no-slip conditions hold on the bounding cylinders

we also have
¢=0,

V=0 onr=rrand onr=r2. (10)

Consider the basic state 1. For this case it is appro-
priate to take the perturbations € = & and ¥ =7¥; to have
physical components of the form

G=(0,0,0(m) e,  Vi=(0,0,v(r)e”, (11)
it being assumed that any instability is spatially homo-

geneous, so that these quantities depend on the radial
coordinate 7 but not on ¢ or z. Then with a, ¢ and V as

given in equation (9) the constraints (2) are satisfied
identically, while the field equations (3)—(5) reduce to
a pair of coupled ordinary differential equations to
determine 6(r) and v(r), namely

4’0 140 (’ﬁtkl_%sff)% (s—m)dv_
d?  rdr r K5 K5 dr
(12)

and

TPV AL
(Lo T pp— 224 4)(dr2 rdr)

2 1% 2\ =0
- o(rs—m(dr r)— , (13)

hy= (s H*1* sin® /K5,

where

k= (K5~ 2K§+ 2K%+ 2K9)/KS. (14)

To make progress with these equations, we will now
assumet that there is an ‘exchange of stabilities’ at any
transition, the implication being that critical values for
the onset of any instability correspond to =0 (thus
precluding the possibility of an oscillatory instability,
with o purely imaginary). Setting =0 in equation (13)
leads simply to v =0, while equation (12) becomes

d’6  de
22 —_— =
PR g T he=0 (15)
for J=1, where
by=hy+k;. (16)

Equation (15) is to be solved subject to
0=0 onr=ryand onr=rn;. (17)

In cases II, III and IV, the analysis is somewhat

similar; the corresponding perturbation fields are
Ei=2&u=(0, 6(r), 0) &’ &v=(06(r),0,0) ¢,

(18)

bl

and in each case if an exchange of stabilities is assumed
then O(r) satisfies equations (15) and (17), with J=1I,

+In analogous problems in nematics it can happen that the
corresponding equations uncouple, and one can then prove
that an exchange of stabilities will occur at a transition (see
[9], for example). For the smectic problems considered herein
such an uncoupling does not occur.
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III or IV and with by given by (16), where
it = (xa H*11 sin® a)/K$,
i = (% H*1 sin® o)/(K5+ K$),
hy = (. H* 17 sin” a)/(K§ + K5),
knp= —(K5+ 2K%)/KS5,

$)I(KS + KS), >

kry = (K§ — 2K5 — K§)I(K§+ K5).

(19)

k= (K —

We note that A, /. v and the &y are| constants,
whereas /i1 depends on 7 (unless H=0).

4. Mechanical instabilities

We first consider the possibility of a so-called mech-
anical instability, which corresponds to the physical
system finding a state of lower static energy by distorting
away from an initial state even when #=0. In each of
the cases I-1V, the differential equation governing the
instability (obtained from (15) by putting 2y =0) is
homogeneous in 7, and may readily be solved by means
of the change of variable

r=re",  I=In(n/n). (20)

The problem then reduces to that of solving the
constant—coefficient equation

d’o )

d_s2+pJ9:0’ py=1"bj (21)
for J=1, 1L, III or 1V, subject to

0=0 ons=0and ons=1; (22)

here by =kj, since H=0. It is thus found that for given
values of 1 and the material parameters, there is a
threshold outer radius r =7 given by py=n" beyond
which a mechanical instability will occur. Explicitly, the
threshold radii for the four cases are given by

re=ry exp[/(kn)'”], (23)

for J=1, II, III or IV, provided, of course, that &; is
positive.f

5. Freedericksz transitions
We now turn our attention to the occurrence of
Fréedericksz transitions induced by the application of
magnetic fields. Of course, to ensure that the initial static
states I-1V are realizable before the field is applied (i.e.
with H=0) it is necessary to choose »<r.; then the
application of an incrementally increasing H should lead

tAlthough the nine elastic constants in W are known to
satisfy certain inequalities, the signs of the k; are unknown at
present; if k;<<0 then there can be no mechanical instability.

to a transition. In cases II-1V, the differential equation
(15) reduces under (20) to (21), the constant Py now
involving a contribution from H. It is found that the
threshold fields H. are given by

by= (fl)’ (24)

for J=II, 111, IV, with b; as in equations (16) and (19).
The result for case II agrees with that of Atkin and
Stewart [ 6], obtained via consideration of static energies
(and given in a different notation in [6]).

Case I is slightly different in that, although equation
(15) for J=1 reduces under (20) to an equation of the
form (21), the coefficient 21 is not a constant, but depends
on s (for H#0)—so the solution is not as for the other
cases. Writing equation (15) in the form

2 }’2 0
d—r2+;5+(k1+hy)r—2—0, (25)
where

d=r,—r,,  h=(uHdsin’ /K5,  (26)

we proceed in two complementary ways. First we obtain
results based on a ‘narrow gap’ approximation, and
secondly we consider an exact solution for the case k1<<0,

With a new variable X and a parameter 6 defined by

r=ri(1+ &x), 6=dlr, (27)
the problem becomes that of solving

@0, 5 40, k&
dx*> 14 68x dx (1+ 8x)?

+h |o=0 (28)

subject to the conditions
0=0 onx=0and on x=1, (29)

For a narrow gap we take 6«1 and seek a solution of
the form

0=0y(x)+ 86, (x)+ 820, (x)+ ...,
h=hy+ Shy+ &hy+ ... (30)

Substituting equation (30) into (28) and equating corres-
ponding powers of 6 we obtain a sequence of problems
of the form

d’6; _ o
de +h09i_Ri (l—o, 1, 2,) (31)
with
0,;=0 onx=0and on x=1, (32)
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where
0
Ry=0, R1:—h190—g,

dx

0 0

R2: —h191—h290—g+xg—k190,
dx dx
do,, do_ ,do,

Ry=—h10,— hy 0, — h30p— —+
3 102 2 U] 360 dx de dx

—k191 +2k1X90, e

A straightforward integration of these equations yields
the threshold field

h=r"—(kitH&+k+H&+ ... (33

In the limit of a very narrow gap (6—0), case I
becomes equivalent to the problem of a Fréedericksz
transition in a smectic sample in ‘homogeneous align-
ment’ held between parallel plates, when a is normal to
the plates, € is parallel to the plates, and the applied
field is parallel to the plates and normal to €. For
this latter problem the threshold field is given by
h=1"; equation (33) shows that the correction to this
(associated with the curvature of the annular geometry)
comes in only at O(8”), and involves only the elastic
constants in ki.

Lastly we consider case I when k1<<0. Equation (25)
has the general solution

0(r)= AJ,(h'""rid)+ BY,(h"?rld), (34)
where ¢ = (— k' and J, and Y, denote Bessel functions.

Application of the boundary conditions (17) yields the
relationship

T (W 21y )Y (W Pryld) — T, (B Prayld) Y, (B 1y 1d) =0

(35)
to determine /. This is rather cumbersome, but in the
special event that k1= —1 the solution (34) simplifies to

1 r—r
o=—\4 h1/2 S
A2 1 COS ry—r1,
. r r
+ Bisin| & (36)
—=n
The boundary conditiolts-(17)then gi =0, and it

is found that the threshold field / is given by &= n’.

6. Summary and discussion
We have presented a catalogue of the threshold
magnetic fields Hc required to induce a Fréedericksz
transition in a smectic sample confined to a cylindrical
annulus. Various configurations of initial director
pattern and of the applied field have been studied. The

threshold fields are given by equations (24), (16) and
(19) for cases II, III and IV, and by equations (33) or
(35) with (14) and (26) for case 1. The H. depend on
five distinct combinations of the nine elastic constants,
so observation of critical phenomena in the experimental
arrangements considered here should provide a means
of measuring these combinations, and hence of deducing
values of Ki, K%, K5, K% and K%. For cases where a
mechanical instability is possible, it is necessary in an
experiment to ensure that the outer radius 72 does not
exceed the appropriate critical radius 7. Additionally,
we note that the existence of a threshold 7. means that a
Fréedericksz transition may be induced with a relatively
small field H: if the system is already ‘near’ a mechanical
instability then only a small field will be needed to ‘push’
it into a transition. On the other hand, an approximation
to the set-up for a purely mechanical instability may be
achievable by means of an ‘almost-cylindrical’ cone in
place of the outer cylinder; then the ‘effective’ radius will
vary slowly along the axis of the system and at the point
where it takes the critical value, a change of orientation
pattern should be observable. Measurements of =7,
at this point will provide an estimate of kj via
equation (23).

When the applied field is azimuthal, order-of-
magnitude arguments for nematics (see [9, 5]) indicate
that typically a line current of about 20 A would be
needed to generate the critical field. If the elastic con-
stants for smectics are of the same order of magnitude
as those for nematics then the above analysis shows that
a comparable value would be required for the smectic
case; with a radial field, a similar critical value would
be needed. In the case of an axial field Strigazzi [10]
estimates that for a nematic ‘cell’ with 71 =1mm and
d=20pum, the critical field H. will typically be about
2X10°Am ' one might expect a similar field for a
smectic sample in such a cell. For larger values of d/r|
this critical value will be smaller.

References

[1] Lestig, F. M., 1979, Adv. Lig. Cryst., 4, 1.

[2] Lestig, F. M., 1970, J. Phys. D, 3, 889.

[3] ATKIN, R.J., and BARRATT, P. J., 1973, QJ MA M, 26, 109.

[4] PALFFY-MUHORAY, P., SPARAVIGNA, A., and STRIGAZZL, A.,
1993, Lig. Cryst., 14, 1143.

[5] BARRATT, P. J., and Durry, B. R., 1996, J. Phys. D,
29, 1551.

[6] ATKIN, R. J., and STEWART, I. W., 1996, Ligq. Cryst.,
22, 585.

[7] LesLie, F. M., STEWART, I. W., and NAKAGAWA, M.,
1991, Mol. Cryst. lig. Cryst., 198, 443,

[8] Lestig, F. M., and BLAKE, G. I, 1995, Mol Cryst. lig.
Cryst., 262, 403.

[9] BARRATT,P.J., and DUFFY, B. R., 1995, Liq. Cryst., 19, 57.

[10] StrIGAZZL A., 1988, Il Nuovo Cimento, 10 D, 1335.


http://www.ingentaconnect.com/content/external-references?article=/0267-8292^28^2914L.1143[aid=688945]
http://www.ingentaconnect.com/content/external-references?article=/0267-8292^28^2922L.585[aid=688946,cw=1,doi=10.1080/026782997208992]
http://www.ingentaconnect.com/content/external-references?article=/1058-725X^28^29198L.443[aid=688185]
http://www.ingentaconnect.com/content/external-references?article=/0267-8292^28^2919L.57[aid=688948]
http://www.ingentaconnect.com/content/external-references?article=/0267-8292^28^2922L.585[aid=688946,cw=1,doi=10.1080/026782997208992]

